Aktuell

 

    • 9. Dez. 2019
      Anfang Dezember veröffentlichte die WNA einen langen Bericht über den Stand bei der Klein-Reaktoren Entwicklung.

      Small Nuclear Power Reactors
      (Updated November 2019)

      There is strong interest in small and simpler units for generating electricity from nuclear power, and for process heat. This interest in small and medium nuclear power reactors is driven both by a desire to reduce the impact of capital costs and to provide power away from large grid systems. The technologies involved are numerous and very diverse……
      Dieser bestätigt aus vielen Aspekten die Vorteile gerade der Kugelbett-Technik. Den Bericht finden Sie unter der Kachel Reaktoren (grün 2)

    • 20.Nov. 19
      Am 31. Oktober präsentierte Wirtschaftsingenieur Dipl.-Ing. Jochen Michels vor fast 70 Teilnehmern des FWP in der IHK Ludwigshafen, was es mit BioKernSprit auf sich hat.
      Bitte schauen Sie auf diesem Link
      http://f-w-p.eu/2019/10/31/zukunftschancen-der-energiepolitik/

    • 16.Nov 19
       Auszug von WNN
      Meanwhile the 210 MWe HTR-PM plant at Shidaowan in China approaches completion, with twin 105 MWe pebble-bed reactors driving a single turbine generator, ……
      Also X-energy has signed an agreement with the Jordan Atomic Energy Commission to build its Xe-100 high-temperature gas-cooled reactor there, following on from an earlier agreement two years ago. The Jordan plant would comprise four 75 MWe modules with pebble-bed TRISO fuel.
      8. Nov. 2019 WNN
      TRISO fuel fabrication moves to mainstream in USA
      X-energy, which is developing a 75 MWe high-temperature gas-cooled reactor (HTR), has agreed with GE-Hitachi’s Global Nuclear Fuel to set up commercial TRISO production using HALEU at GNF’s Wilmington plant in North Carolina. Hitherto, X-energy has had a pilot fuel fabrication facility for TRISO at Oak Ridge National Laboratory, in Tennessee. TRISO (tristructural-isotropic) fuel particles of less than a millimetre diameter have a kernel of uranium oxycarbide with the uranium enriched up to 20% U-235 and surrounded by layers of carbon and silicon carbide, giving a containment for fission products which is stable to very high temperatures. The TRISO particles are incorporated into billiard ball-sized pebbles of graphite encased in silicon carbide, each with about 15,000 fuel particles containing 9 grams of uranium. The principal plant producing such fuel is at Baotou in China, making 300,000 fuel pebbles per year for the HTR-PM reactor almost completed construction at Shidaowan.
      WNN 7/11/19.  Fuel fabrication

    • Zur Frage, warum die so sehr gelobte inhärent sichere Kugelbett-Technik nach ihrem Ende in Deutschland bisher von keinem andern Land umgesetzt wurde, erfahren wir im September 2019 Folgendes aus China:

      • A company of US is developing the pebble bed high temperature gas-cooled reactor under the support of US DOE. The name of this company is X-Energy. Attached please find an introduction of this company and its design on the web of US DOE. Their design is similar to HTR-PM. At the same time they are developing pebble fuel elements working with Oak Ridge National Laboratory. They want to construct power plants at home and abroad. They also want to provide TRISO fuel element to foreign plants.
      • UK is also considering construction of SMR plants to replace the plants which will be decommissioned in the near future. Modular HTGR is a promising candidate because BNFL deeply participated PBMR project in South Africa. 
      • Japan has been developing the modular HTGR technology. They chose the prismatic type of fuel. Although it is difficult to construct a new HTGR plant in Japan due to its internal situation, they have accumulated enough technologies to construct a new plant. Therefore JAEA is trying to export their technology to Poland.

       

      Certainly, it is not easy to construct a new plant for all nuclear energy technologies, including HTGR and other SMR technologies, e.g. NuScale. The reason is, that the licensing is a very costly and time-consuming issue.

      In China, the R&D of HTR-PM has benefited from the support of central government. Especially the nuclear regulators have plenty of experience. They know HTGR technology very well through the construction and operation of HTR-10.

      They have reviewed French PWR, US AP1000, Candu Heavy water-cooled reactor, Russian VVER, etc.

    • Diese Antwort von unabhängiger Seite zeigt am besten, wie gross die Leistung war, die in Jülich schon in den 1970-er Jahren mit auch internationaler Zusammenarbeit erbracht worden ist. Man hat in allen anderen Ländern den bequemeren Weg gewählt:  Reaktoren, die einmal von Admiral Rickover  für U-Boote eingeführt worden waren, hat man an Land gesetzt. Eine Konstruktion, die mit dem Restrisiko behaftet ist. Das kann man im U-Boot leicht begrenzen, ist aber zu Lande von viel grösseren Unfall-Wirkungen begleitet. Das verbleibende „Rest“risiko ist um Dimensionen höher. So etwas mit aufwendigen Sicherheits-Apparaturen vermeiden zu wollen, macht die Reaktoren anfälliger, teurer und leider dennoch gefährlicher ( Tschernobyl. Fukushima).
    • In Deutschland sollte man die unermesslich grossen Vorteile der inhärent sicheren Kugelbett-Technik wieder erkennen, aufnehmen und umsetzen. 

Am 21. Mai 2019 wurde in einem interaktiven Vortrag mit Studenten und Experten die Herstellung von synthetischem Sprit erörtert. Die Fortsetzung erfolgt am23. Okt. in Neuss.

Programmdetails sehen Sie bitte unter
www.biokernsprit.org / Termine / 2019